http://93.174.130.82/news/shownews.aspx?id=9dd8a899-ec50-4db3-8d1c-c1db5f250b3b&print=1
© 2024 Российская академия наук

Искусственный интеллект помогает улучшить параметры производства «зелёного» водорода

25.11.2024



Исследователи из Центра компетенций НТИ «Водород как основа низкоуглеродной экономики» на базе ФИЦ «Институт катализа им. Г.К. Борескова СО РАН» и Университета ИТМО использовали машинное обучение, чтобы оптимизировать параметры катализаторов для интенсификации производства чистого водорода и прогнозировать эффективность фотокатализа.

Математическую модель с использованием ИИ составляли для определения и прогноза активности материалов на основе графитоподобного нитрида углерода (g-C3N4) в реакции фотокаталитического выделения водорода. В процессе обработки данных учитывали условия синтеза g-C3N4, а также фазовый состав, площадь поверхности и каталитическую активность образцов. Для обучения алгоритма применяли метод градиентного бустинга, который эффективно обрабатывает сложные зависимости между параметрами и позволяет максимально точно предсказывать результаты.

Искусственный интеллект помогает улучшить параметры производства «зелёного» водорода 1-1.jpg (jpg, 47 Kб)

Использование машинного обучения для оптимизации процесса получения новых фотокатализаторов на основе графитоподобного нитрида углерода

«Модель помогает сократить время на этапе синтеза, предлагая наиболее оптимальные параметры с наибольшим выходом водорода. Благодаря использованию алгоритмов машинного обучения и анализа данных, она сама может предсказывать, какие условия синтеза приведут к наилучшим результатам. Это минимизирует количество экспериментов и сокращает время на поиск эффективных методик. Также использование модели улучшает точность получаемых данных — она основывается на ранее собранных данных и научных принципах, что позволяет избежать случайных ошибок и повысить воспроизводимость результатов», — рассказывает младший научный сотрудник НОЦ инфохимии ИТМО Вероника Юрова.

Специалисты Водородного центра компетенций НТИ на базе ИК СО РАН создали и проанализировали базу данных по графитоподобному нитриду углерода. Она включила в себя различные подходы к синтезу, данные об активности материалов в реакции фотокаталитического получения водорода, а также результаты физико-химического анализа.

«Над базой мы работали несколько лет. Первоначально синтезировали g-C3N4 разными способами, начиная от традиционных подходов, заканчивая более сложными методиками синтеза. Использование модели на основе искусственного интеллекта позволяет выявлять закономерности между физико-химическими характеристиками g-C3N4, параметрами его синтеза, а также каталитической активностью, благодаря чему исследователи могут быстро и эффективно подбирать оптимальные условия синтеза и оценивать его фотокаталитическую активность в реакции выделения водорода», — добавляет младший научный сотрудник отдела гетерогенного катализа ИК СО РАН Ксения Потапенко.

Разработанный веб-интерфейс находится в открытом доступе и его можно расширять, добавляя новые данные для модели, что позволит поддерживать постоянно актуальную базу данных.

Работа была выполнена при поддержке грантов Российского научного фонда № 24−13−355 и № 24−13−416. Результаты опубликованы в International Journal of Hydrogen Energy.

Источник: Центр НТИ «Водород как основа низкоуглеродной экономики».